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Abstract-The mass transfer of solute from a dilute gaseous mixture during bubble formation at the tip 
of a submerged nozzle in the presence of an instantaneous chemical reaction on the liquid side is simulated 
via a two-parameter model. This mechanistic model is developed from the general mass balance of solute 
by introducing a number ofphysically reasonable assumptions coupled with carefully checked mathematical 
approximations. Using data reported elsewhere, parameter estimates are found and a statistical analysis 
of their significance is presented. Experimental evidence is predicted much better than via other theoretical 
models. The analysis reported is useful for the preliminary design of industrial sparging vessels because 

most of the solute removal occurs during bubble growth. 

1. INTRODUCTION 

THE REMOVAL of a solute from a gaseous mixture via 
dispersion in a suitable liquid phase has motivated a 
number of theoretical and experimental studies 
because of its potential for chemical engineering appli- 
cations. Of particular interest is the stripping of a 
dilute solute from a gaseous phase accompanied by a 
chemical reaction within the liquid phase. This interest 
can be attributed to the fact that (i) the mass transfer 
rates are extremely enhanced with respect to the physi- 
cal absorption counterpart, and (ii) the gaseous 
impurity removed can be readily converted to a 
different chemical species with hopefully less disposal 
problems. When the solute being transported under- 
goes a very fast, irreversible reaction upon contact 
with the liquid then the liquid film where the reaction 
takes place tends to a plane of negligible thickness. 
This plane lies on the interface whenever the liquid 
reactant exists in large excess [ 11. In this situation the 
resistance to mass transfer arising from the liquid side 
vanishes, so the prediction of the fractional removal of 
solute from the gas phase virtually becomes a single- 
phase problem. The condition of gas phase diffusional 
control is approximately valid for a number of systems 
of industrial significance (e.g. removal of ammonia 
from effluent mixtures of NHJair via acidic solutions 
and stripping of H,S from dilute gas streams using 
strong aqueous alkalis [2]). 

It is common practice to account for the mass trans- 
fer process in bubbling operations by means of a single 
overall coefficient. It has been pointed out, however, 
that the bubble formation stage accounts for most of 
the mass transfer under the assumption of an instan- 
taneous reaction occurring on the liquid side [3]. 

Hence the contributions for mass transfer arising from 
the bubble rise stage and the bubble staying either 
in the surface foam or in the vessel headspace after 
breakup are not important for the operating con- 
ditions of industrial interest. The attempt to develop 
a mechanistic model for the molecular transport of 
mass during bubble growth of individual bubbles 
is, therefore, of both academic interest and indus- 
trial significance, provided that sparged vessels with 
sufficiently separated bubbling orifices are employed 

[41. 
During the growth stage, the behaviour of the 

bubble can be approached as a particular case of the 
more general problem of mass transfer in the presence 
of a mobile interface. The fundamental interpretations 
of this phenomenon can be divided into two major 
groups according to the underlying physicochemical 
rationale : (i) static models, where the growing inter- 
face is simulated as a deformable surface, with all gas 
elements on the surface sharing the same residence 
time [5-l l] ; and (ii) dynamic models, where the grow- 
ing interface is assumed to consist of gas elements 
with different ages, which keep their absolute position 
[12, 131 or slide continuously (thus spanning the sur- 
face of the bubble according to a toroidal path) 
[14, 151. 

In this paper, a new mechanistic model aimed at 
the prediction of the mass transfer rates of a solute 
from growing bubbles in the presence of an instan- 
taneous reaction on the liquid side is introduced and 
discussed. The model assumes the circulation within 
the bubble to result from a confined gaseous jet orig- 
inated at the tip of the submerged nozzle. A number 
of physical and algebraic simplifications are made in 
order to produce mathematical expressions which are 
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NOMENCLATURE 

A do. area of gas elements from which solute x longitudinal distance to the nozzle 
was ever removed at the surface of the opening 
bubble Y radial distance to the axis of symmetry of 

A,,,., actual surface area of bubble the jet. 
C I b”b concentration of solute in the bulk of the 

bubble 

CL normalized concentration of solute, Greek symbols 
C,U,lC,, 511 constant of proportionality 

C&b,crt concentration of solute in the bulk 012 constant of proportionafity 
of the bubble at a critical point a3 constant of proportionality 

GUI concentration of solute at the inlet gas ‘V i dimensionless radial coordinate, 
stream J( 3J&,,)J~/4$c&.~,O ( U(x = 0, i = 0) 3 x 

9 gar diffusivity of solute in the gas phase 0 corrective function accounting for the 

9 acceleration of gravity extra turbulence within a constrained 
.I total momentum ofjet in the longitudinal jet relative to the free jet counterpart 

direction, 27r~,,, s? U*(x, I/I)+ dti 0 new form of parameter 5 after the second 

;:&,S 

nth order polynomial reparametrization is carried out, r 
volumetric flow rate of gas 9 dimensionless constant, 

R buh radius of the bubble 256. 1912:“nY”-.;‘;3~~~,Q~~rr-ii’:ZR~,,~”Si 

R no, radius of the nozzle 7.56” QD)p&~L, 5 
t time elapsed since bubble birth i exponent used for power transformation 
t* dimensionless time, t/~,~, of the data or response 

li time at which the gas element arrives at P viscosity 
the surface of the bubble 1? new form of parameter @ after the second 

t,* dimensionless time, tiltfin reparametrization is carried out, 

Lpp approximate value oft, using f!@0-4x6i 
approximation I Z dimensioniess parameter, 

Cd,, dimensionless time, t,._,p/t,in 1@.(j,12’,2. ~~,‘~3.41:hnl”‘-‘“‘6 

T ,A ,jth order term of the nth order . (@BE,, ) 1: ?pgas g i I) I “Qi@; 1 se)/ t OR;:; 2/ 

polynomial, T,,,#Z):= 6 ~“r,_,I~l, 764.21 ‘CZ. t(j8’&3”6/& 

1 $j<n r dimensionless exponent of power 

fr time at which the gas element leaves the dependence of 0 on U(x = 0, [ = 0) 
surface of the bubble &as mass density of gas phase 

r: dimensionless time, If/ten 7 numerical coefficient independent of 

tti, time of bubble refease from the nozzle parameter Z 

(tt* - t%,, approximate value of (tfx - t:) @ lumped proportionality constant, r , ~3 
using approximation IV cp new form of parameter Q, after the first 

iJ longitudinal component of the gas reparametrization is carried out, 
velocity within the jet In {a) 

V radial component of the gas velocity cp new form of parameter t after the first 
within the jet reparametrization is carried out, 

V huh volume of the bubble In {ISUSJ 

r&C, rate of surface displacement due to the @ dummy variable of integration. 
natural surface renewal 

easier to tackle; ali mathematicaf approximations are 
checked a posteriori. The model contains two par- 
ameters, which are fitted to experimental data made 

2. DERIVATION OF THE MATHEMATICAL 

MODEL 

available elsewhere [3]. Both adjustable parameters The exact description of the mass transfer of solute 
can be ascribed simple physical meanings. The fit is from the bulk of a gas bubble towards the liquid~gas 
checked for validity of the underlying assumptions on interface during bubble formation at a nozzle tip is 
the variance of the errors, and the model is tested for extremely complex due to the stochastic behaviour of 
adequacy of its functional and parametric form. The the fluid elements within the bubble. This behaviour 
range where extra experimental data should be arises from the eddies generated by the interaction of 
obtained for further refinement of the parameter esti- the inlet jet stream with the existing gas in a confined 
mates is also reported. space. Even with negligible liquid resistance to mass 
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transfer and negligible free convection within the 
bubble, the exact solution of the differential mass 

balance for the solute would require an a priori knowl- 
edge of the velocity field within the gaseous phase [16]. 
Although this velocity field will be known in detail 
sometime in the near future, the solution of the cor- 
responding differential mass balance will be reached 
only at the expense of much involved numerical 
approaches. These approaches are expected to be too 
lengthy for widespread application, and too complex 
to provide a useful insight to the mass transfer 
phenomena. 

A possible way to overcome the aforementioned 
problem consists of taking a number of simplifying 
postulates on the hydrodynamic pattern within the 
bubble to be valid. The main assumptions considered 
in this communication are listed next : (i) the bubble 
is considered to retain perfect spherical shape, so all 
geometrical properties of a sphere apply ; (ii) iso- 
thermal and isobaric conditions of operation are 
assumed throughout, so temperature and pressure are 
dropped out as disturbances ; (iii) the solute exists in 
the gaseous phase at a very dilute level, so the con- 
vective term in Fick’s first law arising from bulk flow 
is negligible, and the inlet and outlet volumetric flow 
rates of gas are virtually equal ; (iv) the bulk of the 
bubble is a perfectly stirred pool, so no concentration 
gradients can develop within the bubble core ; (v) gas 
elements previously existing in the bulk of the bubble 
are thrown at random to the bubble surface due to 
the interaction with the jet generated at the inlet 
nozzle ; (vi) the actual area of the bubble surface grows 
at the expense of gas elements at the vicinity of the 
point of impact of the jet with the liquid/gas interface 
(forced surface renewal) ; (vii) all gas elements thrown 
to the surface undergo plug flow as they are displaced 
along the bubble shell, from the impact point until the 
wake of the bubble is reached, with a given rate of 
surface displacement, o,,, (natural surface renewal) ; 
(viii) the gas elements returned to the bulk of the 
bubble at the neighbourhood of the nozzle are 
replaced by an equivalent amount of gas elements 
with bulk composition at the jet impact point; 
(ix) the mass flux of solute is essentially unidimen- 
sional and normal to the surface of the bubble at each 
point, so no mass transfer between adjacent gas ele- 
ments on the surface is allowed ; (x) the solvent in the 
gaseous phase and all components in the liquid phase 
are stagnant as far as the gas phase is concerned ; and 
(xi) the rate of transfer of solute at each point on 
the surface is obtained from the classical penetration 
theory under the assumption of unsteady-state con- 
ditions in a semi-infinite medium [17, IS], so any 
change in the concentration of solute in the immediate 
vicinity of the inner surface of the outer gas shell due 
to back diffusion towards the bulk of the bubble does 
not affect the concentration profile in the neigh- 
bourhood of the outer surface of the gas shell. The 
two mechanisms of surface renewal on the gas side 
assumed above are depicted in Fig. 1. 

Natural Surface 
Renewal 

Forced Surface 
Renewal 

bubble 

Gims % fimune 1+dll 

m- gas element involved in the natural 
surface renewal phenomenon 

B- gas element involved in the forced 
surface renewal phenomenon 

)_ generic gas element staying at the 
surface of the bubble at time t 

B- generic gas element moving in the 
bulk of the bubble 

FIG. I. Schematic representation of the two mechanisms of 

surface renewal postulated for the period of bubble birth and 
growth at the tip of a submerged nozzle. 

According to the foregoing postulates, the mass 
balance for the solute can then be written as [I 51 

QgasC,:n = c&s (cb”b+t+) 

The term on the left-hand side of the above equation 
represents the inlet molar rate of solute. The first term 
on the right-hand side corresponds to the molar rate 
of accumulation of solute within the bubble, i.e. 

d( Vbub - C,,,)/dt where Vbub = Qgas - t. The integral 
term on the right-hand side accounts for the molar 
rate of solute disappearance by chemical reaction 
from all gas elements residing at the interface ; since 
no accumulation is permitted at the interfacial plane, 
this kinetic rate must equal the rate of transport of 
solute by molecular diffusion across the gas layer near 
the surface of the bubble. The foregoing integro- 
differential equation must satisfy the following initial 
condition : 

@ t = 0. Chub = c,,. (2) 

For the gas elements that hit the bubble surface at 
time ti, removal of solute takes place until time rf(ti). 
During the time period (tf - ti), the gas element slides 
along the surface with decreasing v,,,, spanning an 
area equal to the actual area of the bubble surface at 
time t,. This statement is mathematically equivalent 
to writing [14] 
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s ‘I 

AsurF = t’ren ($1 d$. (3) 
‘8 

The rate of variation of the area occupied by gas elc- 

ments on the surface undergoing stripping of solute, 
dA,,,/dt, can be obtained by summing up the rate of 
variation of the bubble surface area due to forced re- 
newal, dA,,,,/dt, and the elementary variation of the 
area due to natural surface renewal. c,,, according to 

(4) 

If the bubble had infinite size, the flow pattern of 
the gas within the bubble would approach that of a 
free, infinitesimally narrow jet. The efflux of a jet from 

a small circular orifice that mixes with the surrounding 
stagnant fluid can be studied via the application of 
the boundary layer theory [19]. Disregarding small 

velocities of flow, it is found that the jet becomes 
completely turbulent at a short distance from the 
point of discharge. Owing to turbulence, the emerging 
jet carries with it some of the surrounding fluid which 
was originally at rest because of the friction developed 
on its periphery. The jet spreads outwards in the 
downstream direction owing to the influence of fric- 
tion, whereas its velocity in the centre decreases in 

the same direction [19]. Although the flow tends to 
become turbulent, one will use the exact mathematical 
solution for the laminar case as a basis for the general 
derivation. since both laminar and turbulent flow arc 
described by similar differential equations. Con- 
sistency can bc maintained throughout if suitable 
multiplicative correction factors are introduced in 
order to allow for turbulence [l9]. The case of a com- 
pressible circular laminar jet was evaluated elsewhere 
[20] ; one will not follow it here, however, because the 
characteristic values of the Mach number associated 
with the jet for the interesting ranges of operation are 

much smaller than unity. 
One adopted a system of spatial coordinates with its 

origin in the nozzle opening. with its axis of abscissae 
coinciding with the jet axis, and with its ordinate 

denoting the radial distance with respect to the jet 
axis. The solution for the free circular jet problem was 
Hurst obtained by Schlichting [21]. Similarity argu- 
ments have been employed to relate the velocity pro- 
files in the free jet and in the constrained jet within a 
bubble. Since the width of the jet is proportional to 

the longitudinal position under turbulent conditions 
[19]. one can account for the finite character of com- 
mon bubbles by including in the proportionality con- 
stant, 0, a contribution from the driving force for the 
mixing pattern within the bubble (i.e. the inlet velocity 
of the gas, U(.u = 0, < = 0)). The result for the longi- 
tudinal and radial components of the velocity of the 
jet are thereby obtained to be 

3J 

and 

respectively. 
inspecting the functional form of the correlations 

for the Fanning friction factor on the Reynolds num- 
ber [16], remembering that the pressure drop within a 

confined fluid is a measure of the degree of turbulence 
inside that phase, and assuming that analogy exists 
between the form of the correlations for the case of 
infinite cylindrical and finite spherical geometry, one 
finds that the function O{U(.r = 0, [ = 0)) should be 

tentatively expressed as 

o~u(x=o,~=o)}=x, J$ i ( > (7) 
““i 

where 5 is an arbitrary non-negative parameter. 
Owing to the assumption of a constant pressure along 
the gas path, the flux of momentum in the direction 

of x is constant. If one assumes in addition that the 
velocity profile at the nozzle tip is uniform, then the 
total momentum of the free jet is given by 

For conditions approaching constant flow rate of 
gas through a submerged nozzle, a simple relationship 
derived by equating the buoyant force to the inertia 
force of the liquid that fits experimental data reason- 
ably well was suggested by Davidson and Schtiller 
[22]. Such a predictive expression can be formulated 
as follows : 

The inlet gas stream moves across the bubble core 

and eventually impinges the bubble surface at the 
neighbourhood of the intercept of the axis of sym- 

metry of the nozzle with the gas/liquid interface. Some 
of the pressure-volume work of the entering stream 
is converted into surface energy; the gas elements 
more likely to occupy the extra amount of interface 
available are gas elements directly generated from the 
jet stream after thorough mixing with the bulk gas. 
The remaining gas elements that are not allowed to 
participate in the formation of an extended interface in 
the vicinity of the stagnation point may either rebound 
back or slide along the bubble surface. The former 
phenomenon is less likely to occur than the latter 
because the high longitudinal component of the jet 
stream opposes the rebound tendency. The exact solu- 
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tion of the Navier-Stokes equations for the latter 

axisymmetric flow does not exist, but the closed form 
solutions reported by Homann [23] and Schlichting 
[ 191 for the case of a rotationally symmetric flow at a 
stagnation point suggest that frictional forces should 
retard the motion of fluid in a thin layer near the 
interface (where the non-slip condition is assumed to 
be satisfied [24]). If a parabolic velocity profile 
develops in the boundary layer close to the interface, 
and if unidirectional flow is assumed for the sake of 
simplicity, the differential mass balance to the solute 
assumes the form of .a pseudo-Purday problem [25, 
261, for which an analytical solution exists in the form 
of an infinite series. Inspection of the concentration 
profiles for the case of the laminar flow and plug flow 
[27] confirms that very little difference exists between 
them for the range of Peclet numbers of industrial 
interest (i.e. 0.1 < Pe < 10). Therefore, the assump- 
tion of a plug flow on the bubble outer gas shell is 
operationally and mathematically justified. 

The rate of surface renewal, o,,,, should be pro- 
portional (i) to the longitudinal velocity at the point 
of impact of the jet with the surface of the bubble 
(because this is a measure of the driving force for the 
movement of surface gas elements at this point), and 
also proportional (ii) to the local variation of the 
radial velocity of the jet in the axial direction at the 
point where the jet impinges the gas/liquid interface 
(because this is a measure of the entrainment of the 
gas jet in the radial direction at the neighbourhood of 
the same point). This statement can be mathematically 
expressed as 

V TC” = ~2 u(x = 2&u,, i = 0) 

av 
( > 

av ‘; = 2Rbub,; = o. (10) 

The resulting expression for u,,, can then be obtained 
from equations (5) to (9) to be 

V re” = 

63&“- “@g3’5p;asQ;;s”- 15<,15R::o5;4 

6112&t* . (11) 

Using equation (11) coupled with the geometrical 
properties of the bubble, equation (3) becomes 

(12) 

The above equation cannot be explicitly solved for 
tF(tf*). However, if (tT/tf*)“’ and In (tf/tf*) are 

expanded as a Taylor series about t:, and if one 
assumes that tf is not much smaller than tf*, then good 
accuracy is obtained when truncation is made after 
the linear terms (approximation I). Applying this 
mathematical artifact, equation (12) becomes 

t: z t* 
(1-9p)t; 

vwp = 1+2&:2’3 . (13) 

In order to account for the high rates of stripping 
experimentally observed, equation (4) should in prin- 
ciple reduce to (approximation II) 

d&es 
__ NN u,,(t). 

dt (14) 

If C,,,(ll/)/$ does not change appreciably from t: to 
t*, then one can state that (approximation III) 

Cb”b(ICI) ~ Cb”b(t*) 
II/ t* . (15) 

Substitution of equations (1 1), and (13)-( 15) in equa- 
tion (1) gives 

dC&, SC&, I* d$ __ __ 
’ = ‘,*,’ +I* dt* + 12t* rF(r.J J(t*-IC/) ’ s 

(16) 

Equation (16) can be made equivalent to 

(17) 

provided that equation (13) is first approximately 
transformed to (approximation IV) 

g-t: z (tf*- t*),,, = 39Q5J3. (18) 

Applying the integrating factor rule to equation (17), 
one obtains 

Cb*,b(t*)” Sexp i- $1 dti 
r- -\. 

(19) 

t*exp - 3 
i i t* l/6 

In order to avoid numerical integration, one can resort 
to expressing equation (19) as an infinite combination 
of elementary functions. This can be done by expand- 
ing exp { --Et*-‘/6} as a Taylor series about t* = 1. 
Using the dimensionless counterpart of equation (2) 
coupled to some algebraic manipulation, one finally 
obtains 

= (- I)“+‘((1 -t*)“+‘- l)P,(Z) 
1+ c 

%btf*) = 
It= I t*(n+ I)! 

, 1 c (-l)“(l-t*)“P,(q 

where the nth degree real polynomial is defined by the 
following recursive relation : 

P,(S) = T,,, =; 

P”(E)=~~:(~+l-na)7,,~~,(a), na2. 

(21) 

The coefficients for the first polynomials P,(E) are 
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Table 1. Coefficients T,, of the polynomials P.(S) for each 
order i such that 1 Q j Q n, for degree n such that I < n Q 6 

n 
i 1 2 3 4 5 6 

1 1 
2 -7 1 
3 91 -21 I 
4 - 1729 511 -42 1 
5 43 225 -15015 1645 -70 1 
6 - 1339 975 523 705 -69 300 4025 -105 1 

compiled in Table 1. Inspection of the size of the 
coefficients as n increases allows one to find that, for 
fairly large values of parameter & coupled with lower 

values oft*, convergence of the infinite series in equa- 
tion (20) is slow. Therefore, quadruple precision was 
required for the FORTRAN code implemented in 
order to get accurate results. The variation of 

C&,(t* = 1) with respect to E as given by equation 
(20) is represented in Fig. 2. It is remarkable that 
C&,,(t* = 1) becomes a simple power function of E at 
large values of E (say, greater than 102) expressed by 

5.0396 
lim C&,(1* = 1,s) = V. 
Z-Z_ (22) 

This asymptotic behaviour can be taken advantage of 
during the fit of the theoretical model because the 
experimental data available lie in this range. 

The concentration of solute in the bulk of the 
bubble does not undergo a monotonic variation. A 
critical point, C&b.crtr exists which satisfies the equa- 
tion 

C&tKrt(t*) = + (23) 

6+t, 

I ‘i 
00 01 0.3 0.4 

T-5 O6 
0.8 09 10 

FIG. 3. Check of validity of approximation I presented as 
(I: - t&,,,)/~: vs I* for the volumetric flow rates of 5.0 x 10 -4 
m’s_’ (upper curve) and 5.0x IO-’ m3 SK’ (lower curve). 

provided that equation (I 7) is recalled. Differentiating 
equation (17) twice with respect to t*, and using equa- 
tion (23), one gets 

S 

= 6t*2(B+6t*“6) 
(24 

which takes positive values at all times. Equation (23) 
is, therefore, a necessary and sufficient condition for 
a minimum. 

The validity of the four mathematical approxi- 
mations introduced previously was tested a posteriori 
via use of equation (20). The fractional error involved 

in the approximations can be depicted in Figs. 3-6 
for two volumetric flow rates bounding the region of 
industrial interest. 

FIG. 2. Log-log plot of C&,(r* = 1) vs 5 (solid line). The 
asymptotic linear behaviour at high 5 is represented by the 

dashed line. 

lo-’ 

10.81 I ,i 

00 01 0.3 04 0.5 0.6 0.8 09 l0 
t.’ 

FIG. 4. Check of validity of approximation II presented as 

(d&rldW,, vs r* for the volumetric flow rates of 5.0 x 1 O- 4 
m3 SK’ (upper curve) and 5.0 x IO-’ m3 s-’ (lower curve). 
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I 
00 01 0.3 0.4 “t: 0.6 0.6 0 9 1 0 

FIG. 5. Check of validity of approximation III presented as 
[C&(r:)/t:- C$~b(~*)/l*]/[C&b(t*)/t*] vs t* for the volu- 
metric flow rates of 5.0x lo-“ m3 SC’ (upper curve) and 

5.0 x IO-” m3 s- ’ (lower curve). 

lo-’ 4 

10-e 
00 01 0.3 04 

“i=” O6 
0.8 09 10 

FIG. 6. Check of validity of approximation IV presented as 
I(@ - ?),,&I -(I: - t,?)]/($ - t:) vs t* for the volumetric flow 
rates of 5.0 x 10e6 m’ s- ’ (upper curve) and 5.0 x IO-“ m3 

s- ’ (lower curve). 

3. STATISTICAL ANALYSIS 

The adequacy of the jet stream model was tested by 
fitting it to 11 experimental points of C&, vs Qgas 
for the system NH,/air-HCl/water [3]. In these 
experiments a nozzle with R,,, = 5.0 x 10m3 m was 
employed. The values used for the relevant physical 
properties are as follows: gKas = 2.2 x lO-5 m2 s-’ 
[3], pLgas = 1.813x 1O-5 kg m-’ s-’ [16], and 

P&W = 1.189 kg m- 3. The value used for the physical 
constant is g = 9.8 m SK*. 

The studentized residuals [28] for the full model 
using the best estimates obtained from non-linear 
regression analysis were plotted vs the predictor vari- 
able, and vs the estimated response in Fig. 8. The 
studentized residuals are also represented as a quan- 
tile-quantile plot in Fig. 9. 

The discrete data employed in the non-linear least 
squares fit are represented in Fig. 10. The continuous 
predicted change in C&, with Qgas is overlaid in this 
picture as well as the results obtained from the model 
proposed by Rocha and Guedes de Carvalho [3] to 
explain their experimental results. 

The derivative of the expectation function with Linear approximation inference intervals for each 
respect to either parameter depends in turn on both experimental point and linear approximation infer- 
parameters, so non-linear regression analysis was ence bands for the expected response [28] at the 0.1% 
employed in the search for the best estimates of the significance level are denoted as Fig. 11. The joint 
parameters. The likelihood function of the parameters parameter inference regions represented in Fig. 12 

given the observed values was assumed to be maxi- 
mized with respect to the parameters when the residual 
sum of squares is a minimum (for assumptions under- 
lying validity thereof, see, e.g. ref. [28]). The non- 
linear least squares fit was performed via a numerical 
algorithm implemented in the S language [42] using a 
Gauss-Newton linear approximation to the expec- 
tation function [28] with local corrections on the size 
of the increment [29, 301 introduced for increased 
robustness. 

Since the jet stream model is transformably linear, 
the initial estimates for parameters @ and 5 were 
obtained by linear regression [31] after applying log- 
arithms to both sides of the approximate expectation 
function (i.e. equation (22)). For the one-parameter, 
partial model based on a Poiseuille-type law for the 
dependence of the pressure drop on the inlet velocity 
(i.e. 5 = 1) a linear regression analysis with no slope 
was implemented to get the starting estimate. Once in 
possession of these initial estimates, the non-linear 
regression algorithm proceeds to convergence under 
a very narrow tolerance in a few iterations. The start- 
ing and final best estimates, their standard errors, and 
t-ratios for both the full and the partial models, as 
well as the correlation matrix for the full model are 
tabulated in Table 2. 

Since there is a well justified expectation function 
for the response, if the data should be transformed to 
induce constant variance then the same trans- 
formation should be applied to the expectation func- 
tion to preserve the fundamental relationship [32]. 
Using power transformations of the response as sug- 
gested by Box and Cox [33] within the usual range for 
the exponent 1, the best estimate for i was calculated 
using the maximum log-likelihood theory with esti- 
mates for the parameters as obtained from non-linear 
regression. The plot of the optimum log-likelihood 
function against i is available as Fig. 7, coupled with 
an approximate confidence interval [34, 351. 

In order to decide whether the simpler nested model 
(i.e. the jet stream model with 5 = 1) can fit the data 
set adequately, an extra sum of squares analysis was 
implemented with results summarized in Table 3. 
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Table 2. Starting estimates 
responding standard errors, 

using linear regression, best estimates using non-linear regression, cor- 
f-ratios and correlation matrix based on the linear approximation aboul 

the optimum for both the complete and partial jet stream models 

Model 

Full 

Partial 

Starting Best Standard Correlation 
Parameter estimate estimate error r-Ratio matrix 

Q, 1.7711 x 10m2 1.7682x lO-1 6.0425x IO-’ 29.26 1.0000 0.5127 

5 1.20833 1.20736 2.8183 x 10 ’ 42.84 0.5127 1 .OOOO 

@ 2.1683 x IO- ’ 1.6185x 10m2 1.3171 x 10m4 12.29 

-2 -1 0 1 2 

exponent of Box-Cox transfomwion 

FIG. 7. Plot of the log-likelihood function vs /I for the best fit to the experimental data for each i, (solid 
curve). The 99% confidence interval is enclosed by the intercepts of the dashed line with the solid curve. 

were obtained using both the likelihood theory and jet stream model, and the transformed model after 

the Bayesian approach [28] with uninformative inde- each one of the foregoing reparametrizations, are 

pendent priors for the parameters and the variance tabulated in Table 4. The parameter effect and in- 

1361. trinsic root mean square curvatures [40] corrected by 

The selection of the parameter form in the jet stream the multiplicative factor JF are presented in Table 5. 

model was dictated by the steps of the mathematical 
derivation. A number of alternative forms for the 

parameters can be devised, nevertheless. One of the 
two obvious reparametrizations (with parameters 4 

and cp) enforces the physical constraint that C&, must 
monotonically increase with Qgas (as found in practice 
[3]), and ensures that the proportionality constant is 
always positive. The alternative reparametrization 
(with parameters v and 0) allows convergence prob- 
lems to be relaxed because the suggested restatement 
of the jet stream model makes it conditionally linear 
in v [28]; this feature can be used in more efficient 
formulations of the Gauss-Newton approach [37]. 

The estimates for the parameters can be refined 
by carefully designing extra experiments according 
to Wald’s determinant criterion [41]. The D-profile 
within the range where the experimental data were 
obtained is depicted in Fig. 13. 

4. DISCUSSION 

The measure of the nonlinearity of the jet stream 
model was done by investigating the second-order 
derivatives of the expectation function [3840]. The 
relative curvature array [28] accounted for by the 
parameter effect nonlinearity for the original complete 

The gaseous bubbles generated at the tip of the 
submerged nozzle possess an ellipsoidal shape [3] 
rather than a spherical shape as assumed in the devel- 
opment of the model. However, the difference in sur- 
face area between the two geometries for the same 
bubble volume does not introduce major changes in 
the predicted values of the mass transfer rates because 
the forced surface renewal is of much less importance 
than the natural surface renewal for most applications 
(see approximation II). If full advantage is to be taken 

Table 3. Extra sum of squares analysis for the partial and full jet stream model 

Source 
Sum of 
squares 

Degrees of 
freedom 

Mean 
square F-Ratio 

Associated 
probability (%) 

Extra parameter 
Full model 

Partial model 

1.381 x lO-4 1 I.381 x lo-4 66.883 0.002 
1.859 x IO-’ 9 2.065 x IO-’ 

1.567 x 10m4 IO 
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FIG. 8. Studentized residuals for the full jet stream model 
using the best parameter estimates obtained from non-linear 
least squares plotted vs the predictor variable (a), and vs the 

estimated response (b). 
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. 

. 

. l 
. 

. 

-1 0 1 

Quantiles of Standard Normal 

FIG. 9. Sorted studentized residuals for the full jet stream 
model using the best parameter estimates obtained from non- 
linear least squares plotted vs the quantiles of a standard 

normal distribution. 

from the enhanced rates of solute removal during 
bubble formation, then low heights of liquid are 
required and hence isobaric conditions apply through- 
out as stated in assumption (ii). For common indus- 
trial applications, the solute to be removed exists at 
very dilute levels (say, below Y/O) because this com- 

I 1 I , I 1 

o.oooo2 0.00008 0.00010 

FIG. IU. Semt-log plot of the experimental data employed in 
the non-linear least squares tit (tilled octagons), overlaid with 
the predicted values for C&, using the complete jet stream 
model (solid line) and the predictions using the theoretical 

model proposed elsewhere [3] (dashed line). 

pound is an impurity or a by-product rather than the 
desired product of a process ; hence, assumption (iii) 
holds. The degree of circulation within the bubble is 
usually very high due to the narrow nozzle opening 
coupled with the relatively short size of the bubble 
formed ; therefore, the development of significant con- 
centration gradients in the bulk of the bubble is 
improbable (cf. assumption (iv)). Assumption (v) is 
a direct consequence of the strong interaction of the 
gaseous jet with the existing bubble arising from high 
linear velocities at the nozzle opening. The region 
where new gas elements are more likely to become a 
portion of the bubble surface layer corresponds to the 
vicinity of the intercept of the jet axis with the bubble 
surface as emphasized by assumption (vi) because the 
largest velocity is expected at this point. The bubble 
is considered to form exactly around the axis of sym- 
metry of the nozzle tip and to grow from the nozzle 
tip with no coalescence between the bulk gas and the 
nozzle material. This implies that the centre of mass 
of the bubble actually rises in space as more gas is 
admitted through the nozzle. If the non-slip condition 
is satisfied at the gas/liquid interface, then the gas 
elements on the surface change positions according to 
a toroidal-like path with respect to the axis with the 
origin located at the centre of mass of the bubble, and 
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FIG. 1 I Linear plot of the expected response for C &, (a), coupled with the linear approximation inference 
intervals for each experimental point (b, open rectangles) and the linear approximation inference bands 

for the expected response (b, solid lines) at the 0.1% significance level. 

so assumption (vii) has a physically reasonable basis. 
This phenomenon is the bubble-growth equivalent of 
the bubble-rising plug-flow suggested elsewhere [16]. 
In the reasoning leading to the jet stream model, one 
only transformed the above rate of surface dis- 
placement (static conception) into a rate of surface 
renewal (dynamic conception), which changes with 
time according to a postulated mathematical form. 
Assumption (viii) is a straightforward consequence 
of the dynamic nature of the model reported. The 
difference between solute concentration of adjacent 
gas elements on the surface of the bubble is very 
small compared with the difference in concentration 
between the bulk of the bubble (from which these gas 
elements were generated} and the gas/liquid interface 
(null solute concentration), so assumption (ix) is jus- 
tified. The gas phase often consists of a solute dis- 
solved in air, whereas the liquid phase often involves 
an aqueous solution of reactant. All air components 
are sparingly soluble in water; if the inlet stream is, 
in addition, saturated with humidity, then all com- 
ponents except the solute are stagnant (cf. assumption 
fx)). Assumption (xi) is explained on the grounds 
that the gas elements keep their identity while being 
displaced along the bubble surface, and that their 

residence time on the surface is very small (as expected 
from large values of Q). In spite of the many assump- 
tions considered in the derivation of the jet stream 
model, the results from the model are of practical 
relevance because the fit of only two parameters is 
required and because a functional relationship of the 
amounts of solute removed on physically measurable 
quantities is obtained. 

The power dependence of 0 on U(x = 0, { = 0) 
with a positive exponent (see equation (7)) accom- 
modates two fundamental physical constraints on the 
hydrodynamic pattern within the bubble: (i) at very 
large inlet velocities, the bulk of the gas undergoes 
complete micromixing, so the width of the jet is vir- 
tually infinite at a11 lon~tudinal locations; and (ii) at 
very low inlet velocities, the width of the jet reduces 
to zero, irrespective ofthe longitudinal location within 
the bubble. Although this Fanning factor vs Reynolds 
type of functionality was tentatively assumed, it turns 
out to be a very reasonabie approximation because 
the best estimate for 5 is around 1.2, a value lying 
between I (stable laminar flow) and 7/4 (from the 
Blasius formula for the turbulent regime) 1461. 

The general approximate solution of equations (I) 
and (2) (i.e. equation (20)) is not required from an 
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FIG. 12. Joint parameter inference regions at the 20% (inner 
ellipses) and 5% (outer ellipses) significance level using the 
likelihood theory (a) and the Bayesian approach (b). The 
best estimates of the parameters are denoted by a cross (+). 

engineering point of view because the operating range 
of industrial interest requires that Z be very large : this 
conclusion is possible a priori on the basis of Fig. 2 
coupled to the fact that the values observed for the 
fractional removal are usually very high [3]. This 
result is expected because the reciprocal square-root 

Table 4. Relative curvature matrices for the par- 
ameters in the original model, and in the models 
obtained after the suggested reparametrizations 

Parameter Relative curvature matrix 

@ -0.00004 - 0.00002 
- 0.00003 

r 0.00000 - o.oooo2 
-0.00003 

$J -0.00002 - 0.00000 
-0.00003 

V 0.00000 -0.00002 
-0.00005 

Y 0.00000 0.00001 
-0.00001 

0 0.00000 -0.00001 
-0.00003 

dependence of the average molar rate of stripping on 
the exposure time resulting from the general principles 
of the penetration theory tends to damp the transport 
process very rapidly yielding a first-order, exponential 
dependence of the solute concentration on E. 

The four mathematical approximations were tested 
a posteriori for two limiting flow rates of the dispersed 
phase over a time range comprising the life span of 
the bubble using the approximate analytical solution 
as given by equation (20). In all cases relative errors 
were considered rather than absolute errors because 
the physical properties of the bubble may undergo 
order of magnitude variations during bubble growth 
(namely, the dimensionless solute concentration 
drops from unity down to less than 0.05 for most cases 
of interest, and the dimensionless time interval spent 
by a gas element on the surface of the bubble increases 
from zero to 10m4). The error involved in all approxi- 
mations increases very rapidly from zero during the 
time immediately following bubble birth, but then 
tends to an asymptotically constant value as the time 
of bubble release is approached. For approximations 
I and IV this behaviour is expected on the basis of the 
decrease in goodness of the linear approach based on 
the Taylor series expansion. The behaviour of 
approximation II is due to the decrease of vren relative 
to dA,,,,/dt as time elapses resulting from the t*- ’ 
and t*- v3 functional dependencies, respectively. The 
pattern for approximation III can be explained as 
follows : (i) at bubble birth, tt and t: are virtually the 
same, so the relative error expressed as [C&,,(t:)/tt - 
C~“b(t:)/t:]/Cfb(tf*)it: is zero; (ii) at very short 
times, the concentration of solute decreases rapidly 
and (t:- t:) increases steadily, so the relative error 
undergoes a fast increase ; (iii) after the minimum 
for the concentration of solute is reached the 
change in concentration with time becomes much 
shallower and a monotonically increasing function, 
so the relative error tends to be damped down. All 
approximations are well below the level of 1% relative 
error. This relative error is acceptable because it lies 
below the error associated with the determination of 
the final concentrations immediately after the bubble 
is released (see practical determination of C&,(t* = 1) 

131). 
Two characteristic time scales can be devised in the 

mass transfer process: the time scale for the change 
in concentration of the core of the bubble, and the 
time scale for the diffusional process occurring within 
the shell of the bubble. The mathematical formulation 
of the postulated model was extremely facilitated 
because these two processes could be decoupled due 
to validity of approximation III. 

The theoretical expressions derived from first prin- 
ciples employed by Rocha and Guedes de Carvalho 
[3] lead to predictions of the fractional solute removal 
more than one order of magnitude below the exper- 
imental results obtained. The double surface-renewal 
model suggested by Malcata [14] is able to decrease 
the relative error of the predictions, although the fit 
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FIG. 13. D-Profile plotted vs the predictor variable wIthin the range of the experimental results available 

is still bad. The improvement more recently reported 
by the same researcher [ 151 involving the inclusion of 
an adjustable parameter is able to bring the theoretical 
results closer to the experimental ones, although a 
trend in the sign of the residuals exists as the volu- 
metric flow rate is monotonically changed. All these 

problems are overcome with the jet stream model, 
which is able to accurately predict the observed results 
with two adjustable parameters to which physical sig- 
nificance can be ascribed. 

The t-ratios for both parameters in the complete 
model are well above unity, so the null hypothesis is 
rejected for both parameters. Furthermore, inspection 
of Table 2 allows one to find that the parameters are 

not excessively correlated for the full model (i.e. 
correlations are well below 0.99), so overparametriz- 
ation is not likely to have occurred. 

In order to decide if a simpler model nested in the 

full jet stream model can fit the data set adequately, 
a likelihood ratio test was used as in the linear case 
[31, 341. Since the distribution of the mean square 
ratio is only affected by the intrinsic nonlinearity [28], 
and since this type of nonlinearity is very small in our 
case (see Table 5), then inspection of Table 3 allows 
one to assert that there is a 99.998% chance that 
parameter 5 be significant for the fit. Therefore, one 
should retain < as an adjustable parameter, and so 

accept the full model. 
The non-linear estimation procedure employed 

converged to a minimum value of the residual sum of 

squares. Since no replications were reported as such 
for the experimental data available [3], the assessment 
of the validity of the underlying assumption of con- 

Table 5. Analysis of root mean square cur- 
vature corrected at the 5% significance level 
due to parameter effects nonlinearity and 

intrinsic nonlinearity 

Source of Corrected root mean 
nonlinearity square curvature 

Parameter 
Intrinsic 

8.8287 x IO-’ 
3.3247 x 10-j 

stant variance of the dependent variable over the 
range of interest of the predictor variable was 
obtained via a suitable transformation of the response 
[29]. The value for i that maximizes the likelihood 
function is around 1. = 0. The null hypothesis of hav- 
ing no transformation of the data is accepted at the 
1% significance level, so the assumption of constancy 
of variance for the disturbances can be taken as valid 

for the model in its native form. 
The results from the check of the adequacy of the 

model using a plot of the studentized residuals vs the 
predictor variables [43-44] can be depicted in Fig. 

8(a): no strong relationship is revealed between the 
residuals and the predictor, so all effects due to such 

a variable seem to have been accounted for in the 
model. Systematic bias in the behaviour of dis- 

turbances or significant outliers is not observed for 
the residuals in Fig. 8(b), so the expectation function 

seems adequate. This fact can be confirmed by obser- 
vation of the plot of the data overlaid with the plot of 
the expectation function (Fig. 10) : the fit is very good, 

so convergence took place towards a global minimum 
in the residual sum of squares. 

The quantilequantile plot of the studentized 
residuals vs a normal distribution does not deviate 

appreciably from a straight line, thus suggesting 
appropriateness of the normality assumption [44] (see 
Fig. 9): the criterion of the least squares can, thus, 

be applied. Some of the observed variability can be 
explained due to the nature of the plot [45]. No real 

outliers can be found in the aforementioned plot. 
The 99.9% inference intervals and inference bands 

for the predictions are extremely narrow (see Fig. 11) 
as a consequence of the very low variability of the data 
about the predictions. The joint parameter inference 
regions share basically the same location and shape 
for the two theoretical explanations (see Fig. 12). 
Moreover, the contours are almost perfect ellipses with 
ratio of major and minor axis close to unity thus 
indicating small correlation of the parameter esti- 
mates (cf. Table 2). Larger values for parameter CD 
lead to larger values for parameter 5. 

The relative curvature measures listed in Table 4 
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for the parameter effect nonlinearity show that (i) the 
assumption of planarity of the jet stream model in its 

native parametric form is a very good approximation 
[28], and that (ii) although each of the two repara- 
metrizations listed improves the linearity of the model, 
the change in the parameter effects is slight. The 
square root of the average over all directions of the 
squared curvature is tabulated in Table 5 after having 

been multiplied by the square root of F(v , = 2, v2 = 9 ; 
LX = 5%). Both root mean square curvatures (RMSC) 
are much less than the curvature of the 95% con- 
fidence disk, so the deviation of the expectation sur- 
face with radius l/RMSC from the tangent plane at a 
distance JF from the tangent point is only a small 

fraction of 1% of the radius of the confidence disk. 
Once in possession of estimates for the relevant 

parameters, the main goal of further experimentation 
should be how to refine these estimates. This refine- 
ment may also serve as a double check of the physical 
assumptions involved in the theoretical derivation : 
obvious limitations of the experimental data included 
in the analysis arise from the use of a single system 
and temperature (i.e. constant values for pgasr pgas, and 
g&, as well as the use of a single type of nozzle (i.e. 
same R,,,). In terms of Qgas, a logical choice is to 
design experiments at volumetric flow rates such that 
the volume of the joint inference region [28], or the 
determinant of the product of the transpose of the 
derivative matrix and the derivative matrix itself [47], 
is minimized. Inspecting Fig. 13, one finds that the 

best design point should correspond to a volumetric 
flow rate as high as possible. 
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SIMULATION PAR UN MODELE DE JET DU COMPORTEMENT DU TRANSFERT DE 
MASSE DE BULLES INDIVIDUELLES DE GAZ EN REACTION CHIMIQUE RAPIDE 

R&m&On simule par un modele a deux parametres le transfert de masse de solute d’un melange gazeux 
dime pendant la formation de la bulle au sommet d’une tuyere immergee, en presence d’une reaction 
chimique instantanee du tote du liquide. Ce modele mecaniste est developpe a partir du bilan general de 
masse du solute en introduisant une nombre d’hypotheses raisonnables sur le plan physique, avec couplage 
a des approximations mathematiques contrbltes. En utilisant des don&es experimentales, I’estimation des 
parametres est faite et une analyse statistique de leur signification est presentte. L’experience est predite 
beaucoup mieux que par d’autres modeles thboriques. L’analyse presentee est utile pour la conception 
priliminaire d’unites industrielles parce que la plupart de I’enltvement de solute se fait pendant la croissance 

de la bulle. 

SIMULATION DES STOFFUBERGANGS IN EINZELNE GASBLASEN BEI DER 
REKTIFIKATION 

Zusammenfaasung-Es wird der Stofftransport in einem Gemisch aus diinnem Gas bei der Blasenbildung 
an der Miindung einer iiberfluteten Diise mit Hilfe eines Zweiparametermodells simuliert, wobei auf der 
Fliissigkeitsseite eine sofortige chemische.Reaktion auftritt. Dieses mechanistische Model1 wird aus der 
allgemeinen Stoffbilanz entwickelt, wobei eine Anzahl physikalisch sinnvoller Annahmen und sorgfaltig 
iiberpriifter mathematischer Naherungen eingefiihrt wird. Mit Hilfe fremder Daten werden die Parameter 
ermitteit und eine statistische Analyse ihrer Bedeutung vorgelegt. Experimentelle Ergebnisse konnen 
wesentlich besser wiedergegeben werden als mit anderen theoretischen Modellen. Die analytische Unter- 
suchung ist niitzlich fur die Erstauslegung industrieller Blasensaulen, weil der wesentliche Stoffiibergang 

wahrend des Blasenwachstums auftritt. 

MO~EJIHPOBAHklE MACCOOEMEHA OT@JIbHbIX ITY3bIPbKOB I-A3A rIPI- HX 
EMCTPOM XkIMklrIECKOM BMTAJIKMBAHHH C HCI-IOJIb3OBAHMEM. MOmkl 

CTPY$iHOFO TE9EHIW 


